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SUMMARY 

In computational fluid dynamics, non-linear differential equations are essential to represent important 
effects such as shock waves in transonic flow. Discretized versions of these non-linear equations are solved 
using iterative methods. In this paper an inexact Newton method using the GMRES algorithm of Saad and 
Schultz is examined in the context of the full potential equation of aerodynamics. In this setting, reliable and 
efficient convergence of Newton methods is difficult to achieve. A poor initial solution guess often leads to 
divergence or very slow convergence. This paper examines several possible solutions to these problems, 
including a standard local damping strategy for Newton's method and two continuation methods, one of 
which utilizes interpolation from a coarse grid solution to obtain the initial guess on a finer grid. It is shown 
that the continuation methods can be used to augment the local damping strategy to achieve convergence 
for difficult transonic flow problems. These include simple wings with shock waves as well as problems 
involving engine power effects. These latter cases are modelled using the assumption that each exhaust 
plume is isentropic but has a different total pressure and/or temperature than the freestream. 

KEY WORDS Inexact Newton methods Global convergence Finite elements Full potential equation 
Damping strategies 

1. INTRODUCTION 

Much recent computational work in aerodynamics has dealt with the steady state (time- 
independent) full potential, Euler or Navier-Stokes equations. The resulting boundary value 
problems are highly non-linear. The discretized versions of these problems and are often solved 
with time-marching-like algorithms such as ADI, Runge-Kutta methods or multigrid. '-' An 
alternative sometimes used because of its locally quadratic convergence is Newton's method. 
Shubin et aL6 applied Newton's method to the Euler equations for one-dimensional duct flow. 
The supersonic blunt body problem is discussed in Reference 7. Continuation methods are 
suggested for difficult problems using the freestream Mach number, the ratio of specific heats of 
the gas, or the body shape as parameters. Early applications to viscous incompressible flow 
problems include those described in References 8 and 9. Childs and Pulliam" have applied 
Newton's method to the Euler equations using the factored implicit algorithm accelerated by 
multigrid. More recent applications to aerofoil calculations include the work of Drela, Giles and 
Thompkins.' '-I4 They developed a new algorithm for solving the steady state two-dimensional 
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Euler equations that uses Newton’s method with direct solution of the linearized systems. A good 
initial guess is supplied by using an elliptic grid generator, one set of whose grid lines correspond 
to streamlines for incompressible flow. The solution of each linearized system is accomplished by 
a sparse direct block tridiagonal matrix solver. This algorithm has proven very reliable and 
accurate for aerofoil calculations. Wigton’ has extended this approach to multi-element aero- 
foils and demonstrated the use of the symbolic manipulation package MACSYMA to set up the 
Jacobian matrices required and a sparse matrix solver (a relative of the one used in TRANAIR 
described below) with nested dissection ordering of the unknowns. Continuation using the 
artificial viscosity parameter (viscosity damping) was also used to achieve more reliable global 
convergence. Venkatakrishnan16 applied Newton’s method to the Euler equations discretized on 
structured grids in two dimensions. Techniques such as grid sequencing (obtaining initial guesses 
for Newton’s method by solution interpolation onto successively finer grids) were used to 
improve the reliability of convergence. Sparse matrix solvers were used to solve the linearized 
problems. Venkatakrishnan and Barth” applied Newton’s method to the Navier-Stokes equa- 
tions discretized on unstructured grids in two dimensions using similar methods. 

Newton’s method can be shown to be globally convergent only under very special assumptions. 
Many local damping strategies have been devised to increase the range of problems for which 
Newton’s method converges.’ * These techniques have usually been developed in the context of 
numerical optimization and include Levenberg-Marquardt strategies, backtracking and dog-leg 
strategies. Several of these are examined in Reference 19. 

In this paper we will compare various damping strategies used with an inexact Newton 
method” for transonic flow problems. In this situation, local damping strategies were found to be 
of limited value and strategies based on the nature of the boundary value problem had to be 
introduced to achieve reliable convergence. The strategies for improved global convergence have 
been implemented in a general three-dimensional geometry full potential method developed at 
Boeing called TRANAIR.” In this paper we describe results of applying these strategies with 
TRANAIR, discuss their relative merits and demonstrate in specific cases why they work. 

In two space dimensions it is feasible to use Newton’s method with exact generation and 
factorization of the sparse Jacobian matrices. In three space dimensions, however, typical 
computational stencils are larger and the total number of grid points (and hence unknowns) is 
much larger. This makes Newton’s method practical only if suitable iterative methods are 
available for approximately solving the linearized systems. Krylov subspace methods have been 
used in this context of inexact Newton methods for numerical solution of ordinary differential 
 equation^^^-^^ and for semiconductor device ~imulation.’~ Brown and Saad considered damping 
procedures such as Powell’s dog-leg strategy and line search back tracking for general non-linear 
systems of equations.26 A general non-linear local relaxation preconditioner was considered and 
tested by Chan and Ja~kson .~ ’  This preconditioner has the advantage that it can be implemented 
using only residual evaluations and the diagonal entries of the Jacobian matrix. 

In the work described here an inexact Newton method is used, with the linear problems being 
solved approximately with a preconditioned GMRES algorithm.’* The local damping strategy of 
Bank and Rose” is implemented in this inexact Newton method. General continuation in some 
parameter for the problem is included. The resulting FORTRAN subroutine is about 150 lines of 
executable code. In this context, problem-dependent damping strategies (such as those described 
below) are easy to implement. We have found these strategies to be indispensible in increasing the 
reliability of convergence for difficult transonic flow problems. TWO such strategies will be 
examined in detail, namely grid sequencing and viscosity damping. Grid sequencing involves 
finding an initial guess by interpolation from a solution on a coarse grid. Viscosity damping is a 
continuation process using a parameter measuring artificial viscosity. 



INEXACT NEWTON METHODS FOR TRANSONIC FLOW 1077 

2. INEXACT NEWTON METHODS 

A damped Newton method can be described as follows. Suppose we wish to solve the non-linear 
system of equations 

F (  x )  = 0. (1) 

Given an initial approximate solution xo, for n = 0, 1,2, . . . until the norm of the residual F ( x " )  is 
sufficiently small, set 

x" + A(6x" t I), (2) x"+ 1 = 

F,"(GX"+l) = - F (  X"). (3) 

where A is the step length and 6x"" is the solution of the linear system 
- 

Here F,. is the Jacobian for F linearized about x". This linear operator can be defined by giving its 
action on any vector y: 

F ( x  + Ey) -F  ( x )  
E - 0  E 

(4) 

The step length A can be selected in a variety of ways. One possibility is to choose A so that in 
some appropriate norm, 11 F (x" + ) 11 < 11 F ( x " )  1 1 .  More sophisticated strategies will be discussed in 
Section 7. The GMRES algorithm2* is used in the present method to solve equation (3). This 
algorithm requires only the ability to calculate the action of the linear operator F, on any 
vector y .  Equation (4) is used to approximate this action: 

F ( x  + & y ) - F ( x )  
, 

& 
F x ( Y ) -  

where E is small in some appropriate sense. Thus the linear problem, equation (3), is solved 
without ever explicitly generating the Jacobian for the full non-linear problem. 

To control the cost of the present method, system (3) is solved only approximately with 
GMRES, i.e. 6x"+ satisfies 

(6)  
This makes the method an inexact Newton method.'' In general, if q is constant, local linear 
convergence is guaranteed. If q+O as convergence takes place, the convergence is superlinear 
locally. O 

This algorithm can be viewed as an acceleration procedure for an existing iterative method for 
solving equation (1). Such methods can be thought of as taking some approximation x" to the 
solution and producing a hopefully better approximation 

II F.n(dx" + ) + F ( x " )  II / II F ( x n )  II < q- 

x" + = M (  x").  (7) 
If the iterative method is consistent, the solution of equation (1) is then a fixed point of M so 

that we can replace F by M - I in the above discussion. In practical situations, where complicated 
codes already exists to evaluate M ,  a simple implementation of the above inexact Newton method 
is possible to accelerate M without changing the already existing code. This formulation is 
equivalent to Newton's method for F ( x )  = M ( x ) - x  with each linearized problem solved using 
GMRES. Each linearized problem is 

M ( G X ) - I ( S X )  = - F ( x " ) .  (8) 
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n? could be the iteration matrix for a stationary iterative method, e.g. SSOR, for solving 
some underlying problem ( F already includes preconditioning in this case). In this instance, 
I - M  = C - ’ H ,  where C is a linear preconditioner and H is the Jacobian for the underlying 
problem at x”. In special cases, M could be constructed by applying a stationary iterative method 
to the underlying problem H ( x )  = 0. In simple cases (e.g. if H is symmetric, positive definite and 
linear”, 30 all the theory for the preconditioned conjugate residuals method is applicable. In this 
way the existing algorithm and code to evaluate M need not be changed. This approach has been 
quite successful in accelerating existing computational fluid dynamics codes.31 Indeed, adequate 
preconditioning is quite important to the success of this approximate Newton method. This 
‘black box’ approach is attractive because it automatically utilizes any working iterative method 
as a preconditioning. Also, the method easily takes advantage of large exterior storage devices 
such as the Cray SSD. 

3. BOUNDARY VALUE PROBLEM 

The full potential equation of aerodynamics is 

where the density is given by 

p = p m  [ 1 + + 4 ’ ,  Y-1 ( 1-, q4:) l ’”y-1)  

Here, with ?, taken to be a uniform onset flow, @ is the total velocity potential to be 
determined, q = 11 q@ / I 2  is the local speed, qm = 11 V ,  11’ is the freestream speed, p, is the 
freestream density, M, is the freestream Mach number and y is the ratio of specific heats. 
Equation (9) describes irrotational compressible flow. In addition, boundary conditions are 
required to define a well posed problem. For external flow problems the far-field condition is 

4 

4 = O ( l / R )  (1 1 )  

as x-+ - 00, i.e. upstream of the object. Here the perturbation potential is given by 4 = @-am, 
where @Dm = 3,. On impermeable surfaces the normal mass flux condition is p(d@/dn)  = 0. On 
other surfaces, such as engine inlets, the normal mass flux is a specified function, p(d@/dn) = gl. 
On other surfaces we impose the Dirichlet condition 0 = g3. On engine exhaust surfaces, 
tangential flow can be prohibited by specifying g3 to be constant. Wake surfaces must extend 
downstream from lifting components such as wings. These surfaces allow non-zero circulation in 
potential flow and can be thought of as thin sheets of concentrated ~ort ic i ty .~’  The boundary 
conditions on a wake are 

i t . A ( p V @ )  = 0, (12) 

Ap = 0, (13) 
where the pressure 

Y / ( Y  - 1) ,=, ,[  l+iM:( Y-1 1 - 3 1  
(14) 

and A represents the jump across the wake surface. Equation (12) is an expression of conservation 
of mass across the wake. Equation (13) is required for conservation of normal momentum. 
Equation (1 3) is often linearized about the freestream pressure p = p ,  assuming a small perturba- 
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tion velocity ?4. This leads to the equivalent Dirichlet condition that A@ is constant along the 
wake in the direction of fm. The circulation p at the trailing edge is determined by a Kutta 
condition imposed there. 

The Bateman variational principle, namely that the integral of pressure over the flow field is 
~ t a t i o n a r y , ~ ~  can be used to derive finite element formulae for the full potential equation. In 
subsonic flow this integral is maximized. A generalization of the Bateman variational principle 
which incorporates the boundary conditions described above is that the functional 

is stationary. Here g1 is the given mass flux data on dR,, A@ is the jump in @ across the wake 
surface dR,, p is the unknown representing the jump in @ on aR, determined by equation (13), 
a denotes the average of the upper surface and lower surface values and g 3  is the given Dirichlet 
data on 8R3. The function p is itself unknown and is determined by equation (13). To achieve a 
stable numerical formulation, the treatment of Dirichlet boundary conditions and wake surface 
conditions must be modified. In addition, the natural Neumann condition must be modified to 
account for boundary curvature, since the solution is often sensitive to this quantity and 
the boundary is discretized using flat panels. These modifications are described in detail in 
Reference 2 1. 

A modification of the above formulation allows the simulation of flows involving regions of 
differing total temperature and pressure. The flow in each separate region is still potential as long 
as total temperature and pressure are constant in the region, but pressure and density must be 
redefined in the following way: 

Here rp is the ratio of total pressure in the region to freestream total pressure and rT is the ratio 
of total temperature in the region to freestream total temperature. The regions are assumed to be 
separated by fixed wake surfaces on which two jump boundary conditions are applied. The first is 
the standard static pressure continuity condition, equation (13). If the total pressure and/or 
temperature differences across the wake are large, the pressure formula cannot be linearized, i.e. p 
is not constant in the downstream direction. The second condition is similar to equation (12) but 
requires a modification to make the answer less sensitive to wake position when total pressure 
and temperature differences are large. Equation (12) is replaced by 

where 

Here q,, is the velocity magnitude which makes p = p m  in the given region and po is the density 
at this velocity. Equation (12) becomes a natural jump boundary condition for @* =qm@/qo  if the 
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Bateman principle is modified so that 

where 
2 

P m 4 m  

Po 40 
p* = p 2 .  

4. DISCRETIZATION 

The boundary surfaces of objects to be modelled are described using networks of piecewise flat 
surface patches called panels. This input format allows relatively simple specification of com- 
plicated surfaces. A representation for a sphere that contains 1600 panels is shown in Figure 1. 

The volume grid is generated automatically and is controlled using certain criteria, the most 
recent of which is a solution-adaptive procedure. We start with a coarse uniform rectangular grid, 
called the global grid, that contains all the boundary surfaces but is otherwise independent of 
them. This global grid is used to enforce the far-field condition as well as for the Prandtl-Glauert 
preconditioner (see Section 5).  The global grid is refined locally in a hierarchical manner, i.e. any 
grid box can be refined into eight geometrically similar boxes of equal volume. This process is 
repeated to give a grid with any desired local resolution. De-refinement is also possible by locally 
reversing the process, i.e. removing the eight son boxes of some coarser box. 

The non-linear boundary value problem is discretized on this grid using a finite element 
method. The potential 4 is defined at the grid points and these are the fundamental unknowns. In 
addition, doublet parameters must be introduced at the trailing edges of lifting surfaces to 
simulate lift. The velocity is computed at centroids of the elements and used to compute a density 
that is constant on each element. If the density were constant everywhere (corresponding to 
incompressible flow) and there were no boundaries nearby, the result would be the standard 
seven-point finite difference formula for Poisson’s equation. In the non-linear case the density is 
treated as constant in each region so that it can be factored out of the element stiffness matrix. 
This matrix is the same up to a constant depending on refinement level for any element not cut by 
a boundary surface. When assembled, the result is a 27-point finite difference formula. Elements 
cut by boundaries have special element stiffness matrices as well as special density formulae. The 

Figure 1. Panelling for sphere. 
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finite element integrals are computed on the portion of the box cut off by the boundary surface. 
The unknowns are located at the corners of the box element. In regions of supercritical flow, 
artificial dissipation must be introduced to rule out expansion shocks. This is done by upwinding 
the density using neighbouring elements. This discretization is second-order-accurate in the 
potential and is described in detail in Reference 21. This discrete non-linear operator will be 
denoted by F. In the present context these exact discretization details are not crucial. It is 
important to note, however, that in the presence of strong shocks F has large second derivatives, 
so that gradient information is only of value locally. This is also true of other discretizations of the 
full potential equation. 

5. PRECONDITIONING 

Because problems of practical interest are large and not well conditioned, a preconditioned 
GMRES algorithm is used to solve equation (3). 

For the non-linear discrete full potential operator it is now practical in some cases to use a 
sparse solver as a preconditioner. In two dimensions the linearized problem could be solved 
directly using a nested dissection ordering based on the computational grid.I5 However, this is 
not practical for large three-dimensional problems. In TRANAIR a combination of pre- 
conditioners is employed, one of which is the Jacobian for F restricted to a part of the 
computational grid. This restricted Jacobian matrix often remains a good preconditioner for 
several Newton steps. 

To conveniently handle such a preconditioner, a general package has been constructed for 
input and decomposition of sparse matrices. It has a sorting and merging feature to accumulate 
contributions to a single matrix element. This process corresponds to constructing the global 
stiffness matrix from the element stiffness matrices in the finite element context and is completely 
automated in this sparse matrix package. The package requires an externally generated ordering 
if fill is to be kept minimal. In the case considered here it is relatively easy to generate a nested 
dissection ordering using the grid structure and the unknown locations. Incomplete factorization 
using a dynamic drop tolerance is often helpful for large three-dimensional problems and is a 
feature of the sparse matrix package. More details about this preconditioner can be found in 
References 21 and 34. 

The other preconditioner is a fast Poisson solver applied to the Prandtl-Glauert equation 

~o=( l -A4~)oxx+oyy+(Dzz  (22) 
discretized on a global uniform grid. This equation is a linearization of the full potential equation 
(9) about ca. The discrete operator T is the standard seven-point finite difference discretization 
of 5. More details can be found in References 21 and 35. 

For this combination of preconditioners the linear GMRES iteration converges to five digits in 
1040 iterations, depending on the number of unknowns in the problem, the size of the 
supercritical flow region, and the drop tolerance used in the sparse solver preconditioner. 

6. CONVERGENCE FOR SUBSONIC PROBLEMS 

Newton’s method is rarely globally convergent. Also, its convergence rate is generally quadratic 
only sufficiently close to the solution. In the full potential case the initial iterate is taken to be 
4 = 0, corresponding to freestream flow. This initialization is frequently used in aerodynamics 
but is not a good approximation to the solution in many cases. Since the full potential operator 
linearized about fm (this corresponds to linearizing about 6 = 0) is the Prandtl-Glauert equation 
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(9), the solution after one step of Newton’s method is the solution to the Prandtl-Glauert 
equation on the given grid. For problems in which the flow is subsonic this is often a good starting 
point. 

If the linearized equation convergence tolerance q of equation (6)  is very small, the convergence 
of the method should be close to that of an exact Newton method with II  = 1.0 (see equation (2)). 
This provides a valuable consistency check for the whole code. Any inconsistency in the 
evaluation of the function F would destroy quadratic convergence. The convergence of Newton’s 
method was tested for the case of a sphere of radius 0 8  with an onset flow condition of M ,  = 0.2. 
In this case the peak Mach number in the solution is 0.3. The grid used in this case contained 
about 150000 finite elements. The value of q was chosen to be lo-’ and the Newton method was 
converged to 10 digits. Table I gives the norm of the residual as a function of the Newton iteration 
number. Quadratic convergence since to take place after step 2 since log(R,) = 2 log(R,), where 
R ,  is the L,-norm of the residual for the non-linear equation (1) at iteration n. 

For this case we also examined the total CPU time required on a single-processor CRAY 
X-MP to reduce the non-linear residual by 10 orders of magnitude as a function of q. This CPU 
time excludes all overhead costs, including the generation and factorization of the partial 
Jacobian matrix. The relevant data are shown in Table I1 for several values of q. Note that 
minimizing the number of Newton steps does not necessarily minimize the computer time. For 
minimum computer time, q should start at a fairly large value and decrease as convergence takes 
place. In practice we have found it convenient to fix q = 0.00001. 

7. DAMPING STRATEGIES FOR THE FULL POTENTIAL EQUATION 

The situation as described in the previous section is quite satisfactory for subsonic problems. 
However, when shocks or large stagnation regions are present, convergence of Newton’s method 
is not reliable with the 4 = 0 initialization or any other problem-independent initialization. 

Table I. Newton method residuals for sphere 
in subsonic flow 

0 1 .o 0.0 
1 0.06 - 1.2 
2 OoooO181 - 4.1 
3 0000000000290 - 9.5 

Table 11. Solution CPU cost as a function of q 

rl CPU seconds Newton steps 

0.0 1 
0.000 1 
0~oO0001 
oaooooo 1 

419 5 
416 4 
429 3 
443 3 
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Damping of Newton's method must be introduced for large transonic problems to prevent 
divergence or very slow convergence. 

Various damping strategies have been tested in the present method. One due to Bank and 
Rose'' for determining the step length A is based on the residual for equation (1). This strategy 
was chosen because of its simplicity and ease of implementation. It provides adequate local 
damping in many cases. We tried another trust region method based on a Levenburg-Marquardt 
method but found it no more effective. 

Another strategy that has proved useful in some cases is to further limit 1 so that the solution 
iterate x " + l  does not have local Mach numbers greater than some prescribed cut-off value. This 
prevents spurious large velocities from causing stagnation of convergence. In the ONERA M6 
wing results reported below, this strategy was used with a local Mach number cut-off of J5.  

However, local damping procedures of this kind are only adequate by themselves in cases that 
almost converge anyway. In difficult transonic cases, convergence of Newton's method can 
stagnate owing to the formation of a steep shock in the wrong location early in the iterative 
process. Once this occurs, a local method can rarely move the shock more than one grid point per 
iteration, resulting in very slow convergence. This situation seems to be due to the fact that the 
residual is much larger near the shock than elsewhere. 

To improve convergence in the presence of shock waves, a problem-dependent dissipation 
parameter is introduced. This parameter is used in a continuation process. To describe this 
process, we must first describe the nature of the artificial viscosity used to rule out non-physical 
expansion shocks in the full potential formulation. 

Standard first-order upwinding of the density is used to produce the artificial viscosity required 
when supersonic flow is p r e ~ e n t . ~ . ~ ~  Such an upwinding is given by replacing p in the full 
potential equation with 

where pis the normalized local velocity and q-  p is an upwind undivided difference. In equation 
(23) v is the switching function given by 

v = max(0,l- M : / M ~ ) ,  (24) 

where M is the local Mach number and M ,  is the cut-off Mach number assigned the value 
M: = 0.95 chosen to introduce dissipation just below Mach 1.0. More details can be found in 
Reference 2 1. 

The continuation process can now be described. Initially the discrete problem is modified by 
multiplying the switching function of equation (24) by a moderate constant (1.5-3.0) and by 
reducing the cut-off Mach number. This has the effect of increasing the amount of artificial 
viscosity and applying it to a larger part of the flow field. When the non-linear residual is reduced 
by two orders of magnitude, the problem is modified by reducing the multiplying factor and 
raising the cut-off Mach number. This process is repeated until the desired level of dissipation is 
reached. This continuation process works very well in many cases. It has the effect of locating the 
supersonic zone and the shock position fairly early in the process, even though the shock is quite 
smeared. The effect of viscosity damping can be seen in the case of the ONERA M6 wing at 
M ,  = 0.84 and angle of attack t~ = 3.06" on a grid having about 311000 elements. Results are 
presented for this case in the next section and show a strong shock outboard as well as an oblique 
supersonic-to-supersonic shock. If Newton's method is used with an initial iterate 4 = 0 and the 
Bank-Rose strategy for limiting A, the convergence stagnates at the iterate shown in Figure 2. The 
final converged solution is shown for reference. If A is further limited to control local Mach 
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Figure 2. Iterate for Newton’s method with residual damping for ONERA M6 wing case, M ,  =044, a = 3W’, 91 % span 
station. 

numbers as described above, the convergence is still very slow. Figure 3 shows the Newton iterate 
after six and 12 Newton steps. The final converged solution is shown for reference. Newton’s 
method is moving the shock towards the correct location very slowly. When, in addition, viscosity 
damping is used, convergence is rapid after the initial viscous problems are partially solved. A 
partially converged solution at the second continuation step (Newton step 7) is shown in Figure 4. 
Figure 5 shows the convergence histories for these runs. The residual jumps in this figure 
correspond to discrete changes in the continuation parameter. The drawback of this continuation 
approach is the high cost of even partially solving the viscous problems that are introduced. 

Several continuation strategies were tried that were not very effective. The first was con- 
tinuation in freestream Mach number ( M , )  and the second was continuation in the total pressure 
of the freestream. In both cases, shock location was sensitive to the continuation parameter. 

8. GRID SEQUENCING 

A strategy that has proven to be very reliable for ensuring convergence for difficult transonic 
problems is grid sequencing. In TRANAIR the final fine grid is currently specified by the user 
with tolerances based on local panel size and regions of interest as described in Reference 21. This 
final grid is constructed and then is de-refined one level wherever possible to create the next 
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Figure 3. Iterates for Newton's method with residual and local Mach number damping for ONERA M6 wing case, 
M ,  =0.84, a=3.06", 91% span station. 

coarser grid. This strategy results in rapid coarsening of the grids and contributes to com- 
putational efficiency. The global grid is also coarsened if possible in this process. This process is 
continued until a suitably coarse grid is reached. The problem is first solved on this coarse grid. 
This solution is then interpolated using trilinear interpolation to the next grid in the sequence and 
this interpolated solution used as an initial guess for Newton's method on this grid. This process 
is continued until the finest grid is reached. Thus on the fine grid a good initial iterate is obtained 
at low cost. 

The benefits of this approach are more reliable convergence and lower computer cost. Below 
we present results for several cases that proved very difficult for Newton's method when the initial 
guess 4 = 0 was used. With grid sequencing, all converged rapidly. These cases include a sphere 
of radius 0.8 with a freestream Mach number of 0.7 ( M ,  = 0.7), the ONERA M6 wing with 
M ,  = 0.84 and ci = 3.06", and a powered nacelle where the exhaust contains shock diamonds. 

The first case is a sphere with radius 0.8 at M ,  = 0.7. At this condition the flow is transonic and 
contains a strong shock. This case was used to test the effectiveness of the upwinding used in 
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Figure 4. Partially converged iterate for the second continuation step using viscosity damping for ONERA M6 wing case, 
M ,  =0.84, a=3.06", 91% span station. 

TRANAIR. The solution should be axially symmetric. A fine grid was used to test the accuracy of 
the TRANAIR discretization. The grid contained about 17oooO elements and two planes 
of symmetry were used to reduce the size of the problem. A cut through this grid is shown in 
Figure 6. Figure 7 shows surface Mach numbers as a function of x. Values at all circumferential 
stations are plotted. The solution is quite symmetric and also captures the well known re- 
expansion phenomenon at the foot of the shock. Figure 8 shows the convergence history for this 
case with grid sequencing and with viscosity damping described in the previous section. Five 
continuation steps were needed to achieve convergence with viscosity damping in this case. 
Significant step size damping was required for the first viscous problem. No step size damping 
was needed with grid sequencing. 

A standard aerodynamic test case is flown about the O N E R A  M6 wing at M ,  = 0.84 and 
a = 3-06". This case has an oblique supersonic-to-supersonic shock as well as a normal super- 
sonic-to-subsonic shock. Figure 14 (see later) shows surface pressures at four stations obtained 
from running TRANAIR on three grids. The fine grid had about 311000 elements and the 
TRANAIR solution on this grid agrees well with other inviscid codes.2' As discussed in Section 7, 
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Figure 5. Convergence histories for Newton’s method with various damping strategies for ONERA M6 wing case, 
M ,  = 0.84, a = 3.06. 

Figure 6. Cut through the grid for a sphere in transonic flow, M, =0.7. 
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Figure 7. Surface Mach numbers for sphere, M, =0.7. 
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Figure 8. Convergence histories for viscosity damping method and grid sequencing method for sphere case, M, =0.7. 
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Figure 9. Convergence histories for Newton's method, Newton's method with viscosity damping, and grid sequencing for 
ONERA M6 wing case, M, =0.84, a = 3.06". 

this case did not converge when residual and local Mach number damping was used with 
Newton's method with an initial guess of 4 = 0. Convergence was obtained in two ways. Initially, 
viscosity damping was used and it was found that four continuation steps were required. A 
detailed description of the result is contained in the preceding section. Partially converging the 
viscous problems accounted for about two-thirds of the TRANAIR iteration steps. With grid 
ssquencing this case converged more rapidly and CPU times were proportionally reduced. Figure 
9 compares convergence histories for these three methods. Iterations in the grid-sequencing run 
are scaled by the approximate size of the problem for the early small grids (this scaling 
corresponds approximately to CPU cost). Grid sequencing offers a substantial advantage in both 
rate of convergence and storage requirements. For the grid-sequencing run the CPU time was 
about half of that needed for the viscosity-damping run. About 40% of this time was overhead 
used to generate the grids and operators on those grids. SSD requirements were 174000 blocks (a 
block is 512 words), which is about 20% less than the requirement for the viscosity-damping run. 
Cuts through the three grids used are shown in Figures 10-13 . The final fine grid is the last of 
these three grids. The grids had about 19000, 56000 and 3 1  1000 elements respectively. Figure 14 
shows surface pressures obtained on the three grids used in this case. On the coarser grids the 
shock is in the right location but smeared. 



Coarse Grid 

Medium Grid 

Figure 10. Cuts through the coarse and medium grids generated by grid sequencing for ONERA M6 wing at 91% span, 
M ,  = 0,84, u = 3.06". 

Fine Grid 

Figure 1 1 .  Cut through the find grid generated by grid sequencing for ONERA M6 wing at 91% span, M,=0.84, 
a = 3.06". 
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Figure 12. Cuts through the coarse and medium grids generated by grid sequencing for ONERA M6 wing at the plane of 
symmetry, M ,  =044, a = 3.06". 

Fine Grid 

Figure 13. Cut through the find grid generated by grid sequencing for ONERA M6 wing at the plane of symmetry, 
M ,  = 0.84, u = 3.06". 
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Figure 14. Surface pressure for the three grids generated by grid sequencing for ONERA M6 wing, M, =0.84, a=3.06”. 

A third difficult case that was solved with grid sequencing illustrates the capability to model 
different total pressure in an axisymmetric nacelle for which static test data are available.37 This 
configuration is shown in Figure 15 and had about 5000 panels. The wakes were panelled so that 
the powered streams maintain equal area downstream from the exits. Two planes of symmetry 
were used for this case. Results are shown for the final grid with about 86000 elements. Grid 
sequencing was necessary to obtain reliable convergence for this case, even for fairly coarse grids. 
Five grids were used, with 539,880,2828,16030 and 85983 elements. The total pressure in the 
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Figure 15. Cut through the grid for an axisymmetric powered nacelle, M,=0.1. 
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Figure 16. Stattic pressure for axisymmetric powered nacelle compared to experiment and Navier-Stokes code results, 
M,=0.1. 

powered stream was 2.807 and that in the primary stream was 2.3425. The static pressure on the 
core cowl is compared with experimental data and with the results of running a Navier-Stokes 
code PARC2D37x38 in Figure 16. In this case PARC2D predicted no total pressure loss in the fan 
stream. Thus inviscid modelling can capture the major features of this flow. Finally, Figure 17 
gives the convergence history for this case. Once again the steps on the coarser grids are scaled by 
the number of elements in the grid. 
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Figure 17. Convergence history for grid sequencing method for axisymmetric powered nacelle case, M ,  =0.1 

9. CONCLUSIONS 

The application of an inexact Newton method to the full potential equation of aerodynamics has 
been examined. Several strategies have been examined to extend the range of problems for which 
Newton’s method converges and to accelerate convergence. These strategies are particularly 
helpful when strong shocks are present. 
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